7,853 research outputs found

    Requirement for Slit-1 and Robo-2 in zonal segregation of olfactory sensory neuron axons in the main olfactory bulb

    Get PDF
    The formation of precise stereotypic connections in sensory systems is critical for the ability to detect and process signals from the environment. In the olfactory system, olfactory sensory neurons (OSNs) project axons to spatially defined glomeruli within the olfactory bulb (OB). A spatial relationship exists between the location of OSNs within the olfactory epithelium (OE) and their glomerular targets along the dorsoventral axis in the OB. The molecular mechanisms underlying the zonal segregation of OSN axons along the dorsoventral axis of the OB are poorly understood. Using robo-2/ (roundabout) and slit-1/ mice, we examined the role of the Slit family of axon guidance cues in the targeting of OSN axons during development. We show that a subset of OSN axons that normally project to the dorsal region of the OB mistarget and form glomeruli in the ventral region in robo-2/ and slit-1/ mice. In addition, we show that the Slit receptor, Robo-2, is expressed in OSNs in a high dorsomedial to low ventrolateral gradient across the OE and that Slit-1 and Slit-3 are expressed in the ventral region of the OB. These results indicate that the dorsal-to-ventral segregation of OSN axons are not solely defined by the location of OSNs within the OE but also relies on axon guidance cues

    Effect of stocking density on pig production

    Get PDF
    Numerous stressors such as environmental, nutritional, pathological or equipment related ones are operative in swine facilities. Among many factors, socking density increases social stress and influences pig performance. Many studies have reported that reducing space allowance could induce decreases in growth performance of pigs. In addition, high stocking density induces a behavioral problem and influences physiological stress during transport. Thus, the optimum stocking density has to be defined for improving pig production.Key words: Performance, pigs, stocking density, stress

    Enhancing 2D Growth of Organic Semiconductor Thin Films with Macroporous Structures via a Small-Molecule Heterointerface

    Get PDF
    The physical structure of an organic solid is strongly affected by the surface of the underlying substrate. Controlling this interface is an important issue to improve device performance in the organic electronics community. Here we report an approach that utilizes an organic heterointerface to improve the crystallinity and control the morphology of an organic thin film. Pentacene is used as an active layer above, and m-bis(triphenylsilyl) benzene is used as the bottom layer. Sequential evaporations of these materials result in extraordinary morphology with far fewer grain boundaries and myriad nanometre-sized pores. These peculiar structures are formed by difference in molecular interactions between the organic layers and the substrate surface. The pentacene film exhibits high mobility up to 6.3 cm(2)V(-1)s(-1), and the pore-rich structure improves the sensitivity of organic-transistor-based chemical sensors. Our approach opens a new way for the fabrication of nanostructured semiconducting layers towards high-performance organic electronics.X116049Nsciescopu

    Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink

    Get PDF
    The ability to print and pattern all the components that make up a tissue (cells and matrix materials) in three dimensions to generate structures similar to tissues is an exciting prospect of bioprinting. However, the majority of the matrix materials used so far for bioprinting cannot represent the complexity of natural extracellular matrix (ECM) and thus are unable to reconstitute the intrinsic cellular morphologies and functions. Here, we develop a method for the bioprinting of cell-laden constructs with novel decellularized extracellular matrix (dECM) bioink capable of providing an optimized microenvironment conducive to the growth of three-dimensional structured tissue. We show the versatility and flexibility of the developed bioprinting process using tissue-specific dECM bioinks, including adipose, cartilage and heart tissues, capable of providing crucial cues for cells engraftment, survival and long-term function. We achieve high cell viability and functionality of the printed dECM structures using our bioprinting method.open11349353sciescopu

    Titania Nanomaterials Produced from Ti-Salt Flocculated Sludge in Water Treatment

    Full text link
    Titania is the most widely used metal oxide for the applications of pigments, paper, solar cells and environmental purification. In order to meet the demand of a large amount of titania, our group has developed a novel process which could significantly lower the cost of waste disposal in water treatment, protect the environment and public health and yield economically valuable titania. Titanium tetrachloride (TiCl4) or titanium sulfate (Ti(SO4)2) as an alternative coagulant in water treatment has been explored for the removal of various pollutants from contaminated water or wastewater. Flocculation efficiencies of the Ti-salts were superior to those of Al- and Fe- salts with additional benefits in that a large amount of titania can be produced by calcinating the flocculated floc. The produced titania showed high photocatalytic activity for the removal of volatile organic compounds. The large amount of titania can be applied to pigments, environment and construction materials which require a lot of titania usages. This review paper presents an historical progress from fundamental to application in terms of the detailed production process, characterization, photoactivity of titania produced from Ti-salt flocculated sludge, and its various applications. © 2011 Springer Science+Business Media, LLC

    Structure and dielectric properties of cubic Bi<inf>2</inf>(Zn <inf>1/3</inf>Ta<inf>2/3</inf>)<inf>2</inf> O<inf>7</inf> thin films

    Get PDF
    Pyrochlore Bi2(Zn1/3Ta2/3)2 O7 (BZT) films were prepared by pulsed laser deposition on Pt/TiO2/SiO2/Si substrates. In contrast to bulk monoclinic BZT ceramics, the BZT films have a cubic structure mediated by an interfacial layer. The dielectric properties of the cubic BZT films [ε∼177, temperature coefficient of capacitance (TCC) ∼-170 ppm/°C] are much different from those of monoclinic BZT ceramics (ε∼61, TCC ∼+60 ppm/°C). Increasing the thickness of the BZT films returns the crystal structure to the monoclinic phase, which allows the dielectric properties of the BZT films to be tuned without changing their chemical composition. © 2009 American Institute of Physics

    3D-Printed Drug/Cell Carrier Enabling Effective Release of Cyclosporin A for Xenogeneic Cell-Based Therapy

    Get PDF
    Systemic administration of the immunosuppressive drug cyclosporin A (CsA) is frequently associated with a number of side effects; therefore, sometimes it cannot be applied in sufficient dosage after allogeneic or xenogeneic cell transplantation. Local delivery is a possible solution to this problem. We used 3D printing to develop a CsA-loaded 3D drug carrier for the purpose of local and sustained delivery of CsA. The carrier is a hybrid of CsA-poly(lactic-co-glycolic acid) (PLGA) microsphere-loaded hydrogel and a polymeric framework so that external force can be endured under physiological conditions. The expression of cytokines, which are secreted by spleen cells activated by Con A, and which are related to immune rejection, was significantly decreased in vitro by the released CsA from the drug carrier. Drug carriers seeded with xenogeneic cells (human lung fibroblast) were subcutaneously implanted into the BALB/c mouse. As a result, T-cell-mediated rejection was also significantly suppressed for 4 weeks. These results show that the developed 3D drug carrier can be used as an effective xenogeneic cell delivery system with controllable immunosuppressive drugs for cell-based therapy.1176Ysciescopu

    Synthesis of horizontally aligned ZnO nanowires localized at terrace edges and application for high sensitivity gas sensor

    Get PDF
    We developed step edge decoration method for the fabrication of semiconductor ZnO nanodots and nanowires using pulsed laser deposition. We synthesized high quality ZnO nanowires with the small diameter of about 20 nm and the uniform interval of about 80 nm between each nanowire, which has a simple structure for the formation of contact electrodes. The ZnO nanowire-based sensor was prepared only with the simple process of a gold electrode formation. The ZnO nanowire-based sensor exhibited the high surface-to-volume ratio of 58.6 mu m(-1) and the significantly high sensitivity of about 10 even for the low ethanol concentration of 0.2 ppm.open115860sciescopu
    corecore